
Polyspace® Bug Finder™
Getting Started Guide

R2022a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ Getting Started Guide
© COPYRIGHT 2013–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2013 Online Only New for Version 1.0 (Release 2013b)
March 2014 Online Only Revised for Version 1.1 (Release 2014a)
October 2014 Online Only Revised for Version 1.2 (Release 2014b)
March 2015 Online Only Revised for Version 1.3 (Release 2015a)
September 2015 Online Only Revised for Version 2.0 (Release 2015b)
October 2015 Online Only Rereleased for Version 1.3.1 (Release 2015aSP1)
March 2016 Online Only Revised for Version 2.1 (Release 2016a)
September 2016 Online Only Revised for Version 2.2 (Release 2016b)
March 2017 Online Only Revised for Version 2.3 (Release 2017a)
September 2017 Online Only Revised for Version 2.4 (Release 2017b)
March 2018 Online Only Revised for Version 2.5 (Release 2018a)
September 2018 Online Only Revised for Version 2.6 (Release 2018b)
March 2019 Online Only Revised for Version 3.0 (Release 2019a)
September 2019 Online Only Revised for Version 3.1 (Release 2019b)
March 2020 Online Only Revised for Version 3.2 (Release 2020a)
September 2020 Online Only Revised for Version 3.3 (Release 2020b)
March 2021 Online Only Revised for Version 3.4 (Release 2021a)
September 2021 Online Only Revised for Polyspace Bug Finder Version 3.5,

Polyspace Bug Finder Server Version 3.5, and
Polyspace Bug Finder Access Version 3.1 (Release
2021b)

March 2022 Online Only Revised for Polyspace Bug Finder Version 3.6,
Polyspace Bug Finder Server Version 3.6, and
Polyspace Access Version 4.0 (Release 2022a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Introduction
1

About This Getting Started Guide . 1-2

Polyspace Bug Finder Product Description . 1-3

Bug Finder Analysis on Desktop
2

Run Polyspace Bug Finder on Desktop . 2-2
Run Polyspace in User Interface . 2-3
Run Polyspace on Windows or Linux Command Line 2-4
Run Polyspace in Eclipse . 2-5
Run Polyspace in MATLAB . 2-5

Review Polyspace Bug Finder Results in Polyspace User Interface 2-7
Interpret Results . 2-7
Address Results Through Bug Fix or Comments . 2-8
Manage Results . 2-9

Bug Finder Analysis on Servers During Continuous
Integration

3
Quick Start Guide for Polyspace Server and Access Products 3-2

Installation . 3-2
Setting Up Polyspace Analysis . 3-3

Run Polyspace Bug Finder on Server and Upload Results to Web Interface
. 3-6

Prerequisites . 3-6
Check Polyspace Installation . 3-7
Run Bug Finder on Sample Files . 3-7
Sample Scripts for Bug Finder Analysis on Servers 3-9
Specify Sources and Options in Separate Files from Launching Scripts . . . 3-9
Complete Workflow . 3-10

iii

Contents

View Assigned Results in Polyspace Access Web Interface 3-12
View Assigned Findings by Using the Polyspace Access Project Explorer and

Dashboard . 3-12

Triage and Assign Results in Polyspace Access Web Interface 3-14
Navigate the Polyspace Access Web Interface Dashboard 3-14
Navigate the Results List, Result Details, and Source Code Panels 3-16
Filter Polyspace Access Results . 3-17
Assign Status and Owner to Results . 3-19

Send Email Notifications with Polyspace Bug Finder Server Results . . . 3-20
Creating E-mail Notifications . 3-20
Prerequisites . 3-21
Export Results for E-mail Attachments . 3-22
Assign Owners and Export Assigned Results . 3-22

Offloading Bug Finder Analysis from Desktop to Server
4

Send Bug Finder Analysis from Desktop to Locally Hosted Server 4-2
Client-Server Workflow for Running Analysis . 4-2
Prerequisites . 4-3
Configure and Start Server . 4-3
Configure Client . 4-5
Send Analysis from Client to Server . 4-5

Bug Finder Analysis in IDEs
5

Quick Start Guide for Polyspace as You Code . 5-2
Install Polyspace as You Code Analysis Engine and IDE Extensions 5-2
Run Polyspace as You Code and Review Results . 5-3
Configure Polyspace as You Code IDE Extension . 5-4

Deploy Polyspace Bug Finder
6

Polyspace Products for Code Analysis and Verification 6-2
Using Polyspace Products in Software Development 6-2
Coordinating Pre-Submit and Post-Submit Usage of Polyspace 6-3
Polyspace Products for Ada Code . 6-4

Differences Between Polyspace Bug Finder and Polyspace Code Prover
. 6-5

How Bug Finder and Code Prover Complement Each Other 6-5
Workflow Using Both Bug Finder and Code Prover 6-10

iv Contents

Introduction

• “About This Getting Started Guide” on page 1-2
• “Polyspace Bug Finder Product Description” on page 1-3

1

About This Getting Started Guide
This Getting Started Guide covers all Polyspace Bug Finder products:

• Polyspace Bug Finder
• Polyspace Bug Finder Server™
• Polyspace Access™

Depending on how you set up a Bug Finder run, you might be running an analysis from one of these
locations:

• Desktop: If you are running an analysis and reviewing the results on your desktop, you use
Polyspace Bug Finder. To get started, see “Bug Finder Analysis on Desktop”.

• Server: If you are running an analysis on a server or reviewing the results from a server run on a
web browser, you use:

• Polyspace Bug Finder Server to run the analysis.
• Polyspace Access to host the analysis results (for review on a web browser).

To get started, see “Bug Finder Analysis on Servers During Continuous Integration”.
• IDE: If you are running an analysis on the current file in your Integration Development

Environment (IDE), you use Polyspace as You Code. Polyspace as You Code is a feature available
with Polyspace Access. To get started, see “Bug Finder Analysis in IDEs”.

The Bug Finder analysis engine underlies all Bug Finder products. Chapters that do not mention a
particular platform typically describe the underlying Bug Finder analysis engine and apply to all
three platforms.

1 Introduction

1-2

Polyspace Bug Finder Product Description
Identify software bugs via static analysis

Polyspace Bug Finder identifies run-time errors, concurrency issues, security vulnerabilities, and
other defects in C and C++ embedded software. Using static analysis, including semantic analysis,
Polyspace Bug Finder analyzes software control, data flow, and interprocedural behavior. By
highlighting defects as soon as they are detected, it lets you triage and fix bugs early in the
development process.

Polyspace Bug Finder checks compliance with coding rule standards such as MISRA C®, MISRA C++,
JSF++, CERT® C, CERT C++, and custom naming conventions. It generates reports consisting of
bugs found, code-rule violations, and code quality metrics, including cyclomatic complexity. Polyspace
Bug Finder can be used with the Eclipse™ IDE to analyze code on your desktop.

For automatically generated code, Polyspace results can be traced back to Simulink® models and
dSPACE® TargetLink® blocks.

Support for industry standards is available through IEC Certification Kit (for ISO 26262 and IEC
61508) and DO Qualification Kit (for DO-178).

 Polyspace Bug Finder Product Description

1-3

Bug Finder Analysis on Desktop

• “Run Polyspace Bug Finder on Desktop” on page 2-2
• “Review Polyspace Bug Finder Results in Polyspace User Interface” on page 2-7

2

Run Polyspace Bug Finder on Desktop
Polyspace Bug Finder identifies run-time errors, concurrency issues, security vulnerabilities, and
other defects in C and C++ embedded software. Using static analysis, including semantic analysis,
Bug Finder analyzes control flow, data flow, and interprocedural behavior. By highlighting defects as
soon as they are detected, Bug Finder lets you triage and fix bugs early in the development process.

You can run Bug Finder on complete C/C++ projects from the Polyspace user interface, in a
supported development environment (IDE) such as Eclipse or using scripts. See:

• “Run Polyspace in User Interface” on page 2-3

If this is your first time using Polyspace, you might want to start from the Polyspace user
interface. You can get help from features such as a project setup wizard, assisted configuration
and summarized analysis log.

• “Run Polyspace on Windows or Linux Command Line” on page 2-4

Once you set up a project in the Polyspace user interface and complete a few trial runs, you can
export the configuration to scripts that you run automatically or on-demand. You can also run a
Polyspace analysis directly from the command line in your operating system. You can then save
the commands in batch files (Windows) or shell scripts (Linux) for later runs. If you are running
Polyspace Server products using continuous integration tools such as Jenkins, you can reuse your
scripts from the Polyspace desktop products.

• Run Polyspace in IDEs on page 2-5

Once you are familiar with running Polyspace from the command line, you can create menu items
in your IDE that run your scripts and launch a Polyspace analysis in one click. In Eclipse and
Eclipse-based IDEs, you can install a Polyspace plugin that does not require any additional setup
at all. When you run Polyspace from the Eclipse plugin, the analysis configuration is created
directly from your Eclipse project.

Instead of analyzing complete projects, in your IDE, you can analyze just the current file that you
are working on using Polyspace as You Code. You can install a Polyspace as You Code extension/
plugin in commonly used IDEs such as Visual Studio, Visual Studio Code, or Eclipse. See “Review
Polyspace as You Code Results in IDEs”.

• “Run Polyspace in MATLAB” on page 2-5

If you have a MATLAB installation, it is particularly easy to write scripts to run a Polyspace
analysis. You get all the benefits of scripting in the MATLAB environment, for instance, automatic
help on function syntaxes. After analysis, you can create your own visualization of the results
using MATLAB graphics and visualization tools.

To follow the steps in this tutorial, copy the files from polyspaceroot\polyspace\examples
\cxx\Bug_Finder_Example\sources to another folder. Here, polyspaceroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2022a.

2 Bug Finder Analysis on Desktop

2-2

Run Polyspace in User Interface
Open Polyspace User Interface

Double-click the polyspace executable in polyspaceroot\polyspace\bin. Here,
polyspaceroot is the Polyspace installation folder, for instance, C:\Program Files\Polyspace
\R2022a. See also “Installation Folder”.

If you set up a shortcut to Polyspace on your desktop or the Start menu in Windows®, double-click
the shortcut.

Add Source Files

To run an analysis, you have to create a new Polyspace project. A Polyspace project points to source
and include folders on your file system.

On the left of the Start Page pane, click Start a new project. Alternatively, select File > New
Project.

After you provide a project name, on the next screens, add your source and include folders (both
folders can be the same). In this tutorial, add the path to the folder in which you saved the source and
include files.

After you finish adding your source and include folders, you see a new project on the Project
Browser pane. Your source folders are copied to the first module in the project. You can right-click a
project to add more folders later. If you add folders later, you must explicitly copy them to a module.

 Run Polyspace Bug Finder on Desktop

2-3

Configure and Run Polyspace

You can change the default options associated with a Polyspace analysis.

Click the Configuration node in your project module. On the Configuration pane, change options as
needed. For instance, on the Coding Rules & Code Metrics node, select Check MISRA C:2004.

For more information, see the tooltip on each option. Click the More help link for context-sensitive
help on the options.

To start analysis, click Run Bug Finder in the top toolbar. If the button indicates Code Prover, click
the arrow beside the button to switch to Bug Finder.

Follow the progress of analysis on the Output Summary window. After the analysis, the results open
automatically.

Additional Information

See:

• “Add Source Files for Analysis in Polyspace Desktop User Interface”
• “Run Analysis in Polyspace Desktop User Interface”

Run Polyspace on Windows or Linux Command Line
You can run Bug Finder from the Windows or Linux® command line with batch (.bat) files or shell
(.sh) scripts.

To run a Bug Finder analysis, use the polyspace-bug-finder command.

To save typing the full path to the command, add the path polyspaceroot\polyspace\bin to the
Path environment variable on your operating system. Here, polyspaceroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2022a.

Navigate to the folder where you saved the files (using cd). Enter the following:

2 Bug Finder Analysis on Desktop

2-4

polyspace-bug-finder -sources numerical.c,dataflow.c -I . -results-dir .

Here, . indicates the current folder. The options used are:

• -sources: Specify comma-separated source files.
• -I: Specify path to include folder. Use the -I flag each time you want to add a separate include

folder.
• -results-dir: Specify the path to the folder where Polyspace Bug Finder results will be saved.

Note that the results folder is cleaned up and repopulated at each run. To avoid accidental
removal of files during the cleanup, instead of using an existing folder that contains other files,
specify a dedicated folder for the Polyspace results.

After analysis, the results are saved in the file ps_results.psbf. You can open this file from the
Polyspace user interface. For instance, enter the following:

polyspace ps_results.psbf

Instead of specifying comma-separated sources directly on the command line, you can list the sources
in a text file (one file per line). Use the option -sources-list-file to specify this text file.

Additional Information

See:

• “Run Polyspace Analysis from Command Line”
• polyspace-bug-finder

Run Polyspace in Eclipse
If you develop code in Eclipse or an Eclipse-based IDE, you can run Code Prover directly from your
IDE.

After installing the Eclipse plugin, you can run Polyspace directly on the files in your Eclipse projects.

In the Project Explorer pane in Eclipse, select your project. To use Bug Finder for the analysis,
select Polyspace > Bug Finder. To start the analysis, select Polyspace > Run (Ctrl + R).

After analysis, the results open automatically in Eclipse.

Additional Information

See “Run Polyspace Analysis on Eclipse Projects”.

Run Polyspace in MATLAB
Before you run Polyspace from MATLAB®, you must link your Polyspace and MATLAB installations.
See “Integrate Polyspace with MATLAB and Simulink”.

To run an analysis, use a polyspace.Project object. The object has two properties:

• Configuration: Specify the analysis options such as sources, includes, compiler and results
folder using this property.

 Run Polyspace Bug Finder on Desktop

2-5

• Results: After analysis, read the analysis results to a MATLAB table using this property.

To run the analysis, use the run method of this object.

To run Polyspace on the example file numerical.c in polyspaceroot\polyspace\examples\cxx
\Bug_Finder_Examples\sources, enter the following at the MATLAB command prompt.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.EnvironmentSettings.IncludeFolders = {fullfile(polyspaceroot, ...
'polyspace', 'examples', 'cxx', 'Bug_Finder_Example', 'sources')}
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
resObj = proj.Results;
bfSummary = getSummary(resObj, 'defects');
bfResults = getResults(resObj, 'readable');

After analysis, the results are saved in the file ps_results.psbf. You can open this file from the
Polyspace user interface. For instance, enter the following:

resultsFile = fullfile(proj.Configuration.ResultsDir,'ps_results.psbf');
polyspaceBugFinder(resultsFile)

Additional Information

See:

• “Run Polyspace Analysis by Using MATLAB Scripts”
• polyspace.Project
• polyspace.Project.Configuration Properties

See Also

Related Examples
• “Review Polyspace Bug Finder Results in Polyspace User Interface” on page 2-7
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

2 Bug Finder Analysis on Desktop

2-6

Review Polyspace Bug Finder Results in Polyspace User
Interface

Polyspace Bug Finder checks C/C++ code for defects, coding rule violations or security
vulnerabilities. After you run an analysis, you open the results in the Polyspace user interface (or if
you ran the analysis in Eclipse, the results open in Eclipse).

This topic shows how to review some sample results in the Polyspace user interface. The Polyspace
user interface is available with the desktop products, Polyspace Bug Finder and Polyspace Code
Prover™.

• If you run a single-file analysis in your IDE using Polyspace as You Code, you can review the
results directly within your IDE. See “Review Polyspace as You Code Results in IDEs”.

• If you run an analysis using a Polyspace Server product and upload to Polyspace Access, you can
review the results in a web browser. See “Review Polyspace Bug Finder Results in Web Browser”.

To follow the steps in this tutorial, run Polyspace using the steps in “Run Polyspace Bug Finder on
Desktop” on page 2-2. Alternatively, in the Polyspace user interface, open example results using
Help > Examples > Bug_Finder_Example.psprj. If you have loaded the example results earlier
and made some changes, to load a fresh copy, select Help > Examples > Restore Default
Examples.

Interpret Results
Review each Polyspace result. Find the root cause of the issue.

Start from the list of results on the Results List pane.

• If the Results List pane covers the entire window, select Window > Reset Layout > Results
Review.

• If you do not see a flat list of results, but instead see them grouped, from the list, select
None.

Click the Check column header to sort the results alphabetically. Select one of the Non-initialized
variable results.

 Review Polyspace Bug Finder Results in Polyspace User Interface

2-7

See the source code on the Source pane and further information about the result on the Result
Details pane.

The Result Details pane also highlights a sequence of events leading to the result. For instance, for
the Non initialized variable result, you see the following events:

• The variable value is declared.
• The if statement where value gets initialized is skipped.
• The variable value is read.

You also see these events highlighted in blue on the source code. Sometimes, these events can be
located far apart in the source code. Click an event on the Result Details pane to navigate to the
corresponding location on the source code.

Additional Information

See:

• “Interpret Bug Finder Results in Polyspace Desktop User Interface”
• “Complete List of Polyspace Bug Finder Results”

Address Results Through Bug Fix or Comments
Once you understand the root cause of a Polyspace finding, you can fix your code. Otherwise, add
comments to your Polyspace results to fix the code later or to justify the result. You can use the
comments to keep track of your review progress.

2 Bug Finder Analysis on Desktop

2-8

Right-click the variable value on the Source pane. Select Open Editor. The code opens in a text
editor. Fix the issue. For instance, you can initialize value during declaration.

int value = -1;

If you rerun the analysis, you do not see the Non-initialized variable defect.

Alternatively, if you do not want to fix the defect immediately, assign a status To investigate to the
result. Optionally, add comments with further explanation.

If you assign a status No action planned, the result does not appear in subsequent runs on the same
project.

Additional Information

See:

• “Address Polyspace Results Through Bug Fixes or Justifications”
• “Annotate Code and Hide Known or Acceptable Results”

Manage Results
When you open the results of a Bug Finder analysis, you see a flat list of defects, coding rule
violations or other results. To organize your review, you can narrow down the list or group results by
file or result type.

For instance, you can:

• Review only high impact defects.

Click the Information column header to sort defects by impact. Alternatively, you can filter out

results other than high-impact defects. To begin filtering, click the icon on the column header.

 Review Polyspace Bug Finder Results in Polyspace User Interface

2-9

• Review only the new results since the last analysis.

On the Results List pane toolbar, click the New button.
• Review results in certain files or functions.

On the Results List pane toolbar, from the list, select File.

Additional Information

See “Filter and Group Results in Polyspace Desktop User Interface”.

2 Bug Finder Analysis on Desktop

2-10

Bug Finder Analysis on Servers During
Continuous Integration

3

Quick Start Guide for Polyspace Server and Access Products
To avoid finding bugs late in the development process, run static analysis by using Polyspace
products.

• Polyspace Bug Finder checks C/C++ code for bugs, coding standard violations, security
vulnerabilities, and other issues.

• Polyspace Code Prover performs exhaustive checks for divide by zero, overflow, array access out
of bounds, and other common types of run-time errors.

See also “Differences Between Polyspace Bug Finder and Polyspace Code Prover” on page 6-5.

If you run Polyspace checkers regularly as part of continuous integration, you can protect against
regressions from new code check-ins. To run Polyspace on a server during continuous integration, use
Polyspace Bug Finder Server and Polyspace Code Prover Server. To host the Polyspace analysis
results, use Polyspace Access.

A typical workflow looks like this figure.

Installation
Prerequisites

Depending on the needs of your project, team or organization, you have decided to obtain a certain
number of licenses of Polyspace Server and Polyspace Access products. This guide helps you to install
individual instances of these products on a machine.

3 Bug Finder Analysis on Servers During Continuous Integration

3-2

Install Polyspace Server

To install Polyspace Server products, download and run the MathWorks installer. Enter a license for
the Polyspace Server products (or request a trial license). See also Request a Trial License. The
Polyspace Server products are installed in a separate folder from other MathWorks products. See also
“Install Polyspace Server and Access Products”.

Install Polyspace Access

Before installing Polyspace Access, consider the number of users who will potentially review
Polyspace results simultaneously. The system requirements depend on the number of simultaneous
reviewers. See also “System Requirements for Polyspace Access”.

Polyspace Access consists of several services: a user manager to authenticate user logins, an issue
tracker to integrate your bug tracking tool with Polyspace, a database to manage results, a web
server to show results, and a gateway to handle communications. The services are deployed in
Docker containers. You can start the services from a common interface called the Cluster Admin.

To install Polyspace Access:

• Download the installer as a zip file.
• Unzip the file and start the Cluster Admin. From the Cluster Admin interface, start the various

services. See “Install Polyspace Access for Web Reviews”.

After installation, to see uploaded results, you and other reviewers can log in to:

https://hostName:portNumber/metrics/index.html

Install Network License Manager

Both Polyspace Server and Polyspace Access use licenses that require communication with a network
license manager for license checkouts.

• To install, configure and start the network license manager for Polyspace Server, see “Administer
Network Licenses”.

• To install, configure and start the network license manager for Polyspace Access, see “Manage
Polyspace NNU Licenses”.

Setting Up Polyspace Analysis
Prerequisites

You or your IT department in your organization must install the required number of Polyspace Server
and Polyspace Access instances. This guide helps you to set up a Polyspace analysis as part of
continuous integration using a single instance of Polyspace Server and Polyspace Access.

To check that your Polyspace Server and Polyspace Access installations can communicate with each
other, see “Check Polyspace Installation”.

Run Polyspace Server and Upload Results to Polyspace Access

You can run the Polyspace Server products at the command line of your operating system:

• To run the analysis, use the polyspace-bug-finder-server and polyspace-code-prover-
server executables.

 Quick Start Guide for Polyspace Server and Access Products

3-3

https://www.mathworks.com/downloads/
https://www.mathworks.com/campaigns/products/trials.html

• To upload analysis results, use the polyspace-access executable. You can also use this
executable to export the results from Polyspace Access as text files for archiving or email
attachments.

You can run all Polyspace executables from the polyspace/bin subfolder of the Polyspace
installation folder (for instance, /usr/local/Polyspace Server/R2022a, see also “Installation
Folder”). To start running Polyspace Server by using sample C source files and sample scripts, see:

• “Run Polyspace Bug Finder on Server and Upload Results to Web Interface” on page 3-6
• “Send Email Notifications with Polyspace Bug Finder Server Results” on page 3-20

You can also preconfigure the Polyspace analysis options from your build command (makefile), and
then append a second options file with analysis specifications such as checkers. See “Create
Polyspace Analysis Configuration from Build Command (Makefile)”.

If you have an installation of the Polyspace desktop products, you can prepare the analysis
configuration in the user interface of the desktop products. You can then generate Polyspace options
files to run during continuous integration. See “Configure Polyspace Analysis Options in User
Interface and Generate Scripts”.

Include Polyspace Runs in Continuous Integration by Using Tools Such as Jenkins

Once you have working scripts to run a Polyspace analysis, you can run those scripts at predefined
intervals using continuous integration tools such as Jenkins and Bamboo. In Jenkins, you can use a
Polyspace plugin to point to your Polyspace installations and send email notifications to developers
after the analysis, based on criteria such as new defects.

From within the Jenkins interface, search for and install the Polyspace plugin. For a quick start on
using the Jenkins plugin and sample scripts, see the Polyspace plugin GitHub repository. For the full
workflow with Jenkins, see “Sample Scripts for Polyspace Analysis with Jenkins”.

Create a Workflow for Result Reviewers

Depending on tools that you already use, you can set up a convenient workflow for result reviewers.
For example:

Reviewers receive alerts for new results and log into Polyspace Access

• When new results are available, the continuous integration tool alerts a group of users. The email
alert contains the Polyspace Access URL of the project where the results are uploaded.

• In the Polyspace Access interface, a reviewer can open this project URL, filter results based on
files, and fix the issues or set a status for the results. See also:

• “Filter and Sort Results in Polyspace Access Web Interface”
• “Address Results in Polyspace Access Through Bug Fixes or Justifications”

Reviewers get customized email alerts with results in attachment

• Before upload to Polyspace Access, using the -set-unassigned-findings option of the
polyspace-access executable, the continuous integration (CI) tool assigns owners to new
analysis results based on file or component ownership or another criteria.

• After upload, using the -export option of the polyspace-access executable, the CI tool
exports analysis results for each owner to a separate text file. The tool then sends the text file in

3 Bug Finder Analysis on Servers During Continuous Integration

3-4

https://github.com/mathworks/mathworks-polyspace-plugin

an email attachment to the owner. The text file contains results with the corresponding URLs in
the Polyspace Access interface.

If you use Jenkins as your CI tool, the Polyspace plugin in Jenkins directly supports this workflow.
See “Sample Scripts for Polyspace Analysis with Jenkins”.

• On receiving the email, the owner opens the attached text file, copies the URL of each result to
their web browser and reviews the result.

Reviewers open tickets from bug tracking tools

• A reviewer, such as a quality engineer, reviews all new results and creates JIRA tickets for
developers. See “Create and Track Issue in Bug Tracking Tool from Polyspace Access Web
Interface”.

• Developers open each JIRA ticket and navigate to the corresponding Polyspace result in the
Polyspace Access interface.

 Quick Start Guide for Polyspace Server and Access Products

3-5

Run Polyspace Bug Finder on Server and Upload Results to
Web Interface

Polyspace Bug Finder Server checks C/C++ code for defects and coding standard violations, and then
uploads findings to a web interface for code review.

You can run Bug Finder as part of continuous integration. Set up scripts that run a Bug Finder
analysis at regular intervals or based on new code submissions. The scripts can upload the analysis
results for review in the Polyspace Access web interface and optionally send emails to owners of
source files with Polyspace findings. The owners can open the web interface to review only the new
findings from their submission, and then fix or justify the issues.

In a typical project or team, Polyspace Bug Finder Server runs periodically on a few testing servers
and uploads the results for review. Each developer and quality engineer in the team has a Polyspace
Access license to view the results in the web interface for investigation and bug fixing.

Prerequisites
To run a Bug Finder analysis on a server and review the results in the Polyspace Access web
interface, perform this one-time setup:

• To run the analysis, install one instance of the Polyspace Bug Finder Server product.
• To upload results, set up the components required to host the web interface of Polyspace Access.
• To view the uploaded results, you and each developer reviewing the results must have a Polyspace

Access license.

See “Install Polyspace Server and Access Products”.

3 Bug Finder Analysis on Servers During Continuous Integration

3-6

Check Polyspace Installation
To check if Polyspace Bug Finder Server is installed:

1 Open a command window. Navigate to polyspaceserverroot\polyspace\bin. Here,
polyspaceserverroot is the Polyspace Bug Finder Server installation folder, for instance,
C:\Program Files\Polyspace Server\R2022a. See also “Installation Folder”.

2 Enter:

polyspace-bug-finder-server -help

You should see the list of options allowed for a Bug Finder analysis.

To check if the Polyspace Access web interface is set up for upload:

1 Navigate again to polyspaceserverroot\polyspace\bin.
2 Enter:

polyspace-access -host hostName -port portNumber -create-project testProject

Here, hostName is the name of the server hosting the Polyspace Access web server. For a locally
hosted server, use localhost. The portNumber is the optional port number of the server. If you
omit the port number, 9443 is used.

If the setup was complete, a project called testProject is created in the Polyspace Access web
interface.

You are prompted for your login and password each time that you use the polyspace-access
command. To avoid entering login information each time, provide the login and an encrypted
version of your password with the command. To create an encrypted password, enter:

polyspace-access -encrypt-password

Enter your login and password. Copy the encrypted password and provide this encrypted
password with the -encrypted-password option when using the polyspace-access
command.

3 In a web browser, open this URL:

https://hostName:portNumber/metrics/index.html

Here, hostName and portNumber are the host name and port number from the previous step.

In the Project Explorer pane on the Polyspace Access web interface, you see the newly created
project testProject.

Run Bug Finder on Sample Files
To run Bug Finder, in your operating system, open a command window.

1 To run a Bug Finder analysis, use the polyspace-bug-finder-server command.
2 To upload the results to the Polyspace Access web interface, use the polyspace-access

command.

 Run Polyspace Bug Finder on Server and Upload Results to Web Interface

3-7

To avoid typing the full path to the command, add the path polyspaceserverroot\polyspace
\bin to the Path environment variable on your operating system.

Try out the commands on sample files provided with your Polyspace installation.

1 Copy the sample source files from polyspaceserverroot\polyspace\examples\cxx
\Bug_Finder_Example\sources to another folder where you have write permissions.
Navigate to this folder at the command line.

2 Enter:

polyspace-bug-finder-server -sources numerical.c,dataflow.c -I .
 -checkers numerical,data_flow -results-dir .
polyspace-access -host hostName -port portNumber
 -login username -encrypted-password pwd
 -create-project testProject
polyspace-access -host hostName -port portNumber
 -login username -encrypted-password pwd
 -upload . -project myFirstProject -parent-project testProject

Here, username is your login name and pwd is the encrypted password that you created
previously. See “Check Polyspace Installation” on page 3-7.

Refresh the Polyspace Access web interface. You see a folder testProject on the Project Explorer
pane. The folder contains one project myFirstProject.

To see the results in the project, click Review. For more information, see “Review Polyspace Bug

Finder Results in Web Browser”. You can also access the documentation using the button
in the upper right of the Polyspace Access interface.

The analysis options used with the polyspace-bug-finder-server command are:

• -sources: Specify comma-separated source files.
• -I: Specify path to include folder. Use the -I flag each time you want to add a separate include

folder.
• Find defects (-checkers): Specify the defects (bugs) to check for.

3 Bug Finder Analysis on Servers During Continuous Integration

3-8

• -results-dir: Specify the path to the folder where Polyspace Bug Finder results will be saved.

Note that the results folder is cleaned up and repopulated at each run. To avoid accidental
removal of files during the cleanup, instead of using an existing folder that contains other files,
specify a dedicated folder for the Polyspace results.

For the full list of options available for a Bug Finder analysis, see “Complete List of Polyspace Bug
Finder Analysis Engine Options”. To open the Bug Finder documentation in a help browser, enter:

polyspace-bug-finder-server -doc

Sample Scripts for Bug Finder Analysis on Servers
To run the analysis, instead of typing the commands at the command line, you can use scripts. The
scripts can execute each time that you add or modify source files.

A sample Windows batch file is shown below. Here, the path to the Polyspace installation is specified
in the script. To use this script, replace polyspaceserverroot with the path to your installation.
You must have already generated the encrypted password for use in the scripts. See “Check
Polyspace Installation” on page 3-7.

echo off
set POLYSPACE_PATH=polyspaceserverroot\polyspace\bin
set LOGIN=-host hostName -port portNumber -login username -encrypted-password pwd
"%POLYSPACE_PATH%\polyspace-bug-finder-server" -sources numerical.c,dataflow.c -I .^
 -checkers numerical,data_flow -results-dir .
"%POLYSPACE_PATH%\polyspace-access" %LOGIN% -create-project testProject
"%POLYSPACE_PATH%\polyspace-access" %LOGIN% -upload . -project myFirstProject
 -parent-project testProject
pause

A sample Linux shell script is shown below.

POLYSPACE_PATH=polyspaceserverroot/polyspace/bin
LOGIN=-host hostName -port portNumber -login username -encrypted-password pwd
${POLYSPACE_PATH}/polyspace-bug-finder-server -sources numerical.c,dataflow.c -I .\
 -checkers numberical,data_flow -results-dir .
${POLYSPACE_PATH}/polyspace-access $LOGIN -create-project testProject
${POLYSPACE_PATH}/polyspace-access $LOGIN -upload . -project myFirstProject
 -parent-project testProject

Specify Sources and Options in Separate Files from Launching Scripts
Instead of listing the source files and analysis options within the launching scripts, you can list them
in separate text files.

• Specify the text file listing the sources by using the option -sources-list-file.
• Specify the text file listing the analysis options by using the option -options-file.

By removing the source files and analysis option specifications from the launching scripts, you can
modify these specifications as required with new code submissions while leaving the launching script
untouched.

Consider the script in the preceding example. You can modify the polyspace-bug-finder-server
command to use text files with sources and options. Instead of:

 Run Polyspace Bug Finder on Server and Upload Results to Web Interface

3-9

polyspace-bug-finder-server -sources numerical.c,dataflow.c
 -I . -checkers numerical,data_flow -results-dir .

use:

polyspace-bug-finder-server -sources numerical.c,dataflow.c
 -I . -checkers numerical,data_flow -results-dir .

Here:

• sources.txt lists the source files in separate lines:

numerical.c
dataflow.c

• polyspace_opts.txt lists the analysis options in separate lines:

-I .
-checkers numerical,data_flow

Typically, your source files are specified in a build command (makefile). Instead of specifying the
source files directly, you can trace the build command to create a list of source specifications. See
polyspace-configure.

Complete Workflow
In a typical continuous integration workflow, you run a script that executes these steps:

1 Extract Polyspace options from your build command.

For instance, if you use makefiles to build your source code, you can extract analysis options
from the makefile. The command below first executes make and then determines the analysis
options from the processes executed.

polyspace-configure -output-options-file compile_opts make

See also:

• polyspace-configure
• “Create Polyspace Analysis Configuration from Build Command (Makefile)”

2 Run the analysis with the previously created options file. Append a second options file that
contains the remaining options required for the analysis.

polyspace-bug-finder-server -options-file compile_opts -options-file run_opts

See “Options Files for Polyspace Analysis”.
3 Upload the results to Polyspace Access.

polyspace-access login -upload resultsFolder -project projName
 -parent-project parentProjName

Here, login is the combination of options required to communicate with the web server that is
hosting Polyspace Access:

3 Bug Finder Analysis on Servers During Continuous Integration

3-10

-host hostName -port portNumber -login username -encrypted-password pwd

resultsFolder is the folder containing the Polyspace results. projName and parentProjName
are names of the project and parent folder as they would appear in the Polyspace Access web
interface.

4 Optionally, send email notifications to developers with new results from their code submission.
The email contains attachments with links to the results in the Polyspace Access web interface.

See “Send Email Notifications with Polyspace Bug Finder Server Results” on page 3-20.

See examples of scripts executing these steps in “Sample Scripts for Polyspace Analysis with
Jenkins”.

See Also
polyspace-access | polyspace-bug-finder-server

More About
• “Send Email Notifications with Polyspace Bug Finder Server Results” on page 3-20
• “Send Bug Finder Analysis from Desktop to Locally Hosted Server” on page 4-2
• “Complete List of Polyspace Bug Finder Analysis Engine Options”

 Run Polyspace Bug Finder on Server and Upload Results to Web Interface

3-11

View Assigned Results in Polyspace Access Web Interface
In a typical collaborative review workflow, results in Polyspace Access are assigned to individuals for
further analysis, fixing, or justification. Three common ways to access your assigned results are:

• You receive a direct link to a finding or set of findings.
• You open Polyspace Access and navigate to your assigned results from the Project Overview

dashboard.
• You open Polyspace Access and navigate to your assigned results using the Review button in the

taskbar and the Assigned to me filter from the filters drop-down list.

If you receive a link to your results, click the link to view your assigned results. Links are commonly
sent through email or a bug tracking tool ticket.

View Assigned Findings by Using the Polyspace Access Project
Explorer and Dashboard
Before you start reviewing your assigned results in Polyspace Access, make sure that:

• You have a valid login for Polyspace Access.
• You know the URL for your company’s Polyspace Access Web Interface. If you do not know the

URL, contact your Polyspace Access administrator.
• The results must be uploaded to Polyspace Access.

To view your assigned findings:

1 Log into your company’s Polyspace Access Web Interface by using a web browser.
2 Open the Project Explorer on the left side and select your project run. Projects are listed in a

file-folder organization system. A project folder can contain additional sub-folders or individual
project runs. After you select your results, the Project Overview dashboard opens, displaying
your results.

If you select the folder, the dashboard shows an aggregate of the statistics for all the project runs
in that folder.

3 Click Assigned To Me on the Summary card of the Project Overview dashboard. The REVIEW
window opens and shows the Results List filtered to all the results that are assigned to you. If
you select a folder instead of a project run, Assigned To Me is not clickable.

3 Bug Finder Analysis on Servers During Continuous Integration

3-12

You can reassign your results to another user if needed. See “Triage and Assign Results in Polyspace
Access Web Interface” on page 3-14. At this point, all results assigned to you are displayed and you
can begin investigating your results.

See Also

More About
• “Create Custom Filter Groups in Polyspace Access Web Interface”
• “Review Polyspace Bug Finder Results in Web Browser”
• “Create and Track Issue in Bug Tracking Tool from Polyspace Access Web Interface”

 View Assigned Results in Polyspace Access Web Interface

3-13

Triage and Assign Results in Polyspace Access Web Interface
Polyspace Access offers a centralized database where you can store Polyspace analysis results for
sharing with your team and performing collaborative reviews. Once analysis results are uploaded to
Polyspace Access, a common next step is to filter and assign results to team members. Use the
Polyspace Access dashboards and links to access results. Use filters to review and sort the results
that you want to assign.

1 Log into the Polyspace Access web interface by using a web browser.
2 Open the Project Explorer on the left side and select your project run. Projects are listed in a

file-folder organization system. A project folder can contain additional sub-folders or individual
project runs. You can use the filter at the top of the Project Explorer to search for uploaded
results. After you select your results, the Project Overview dashboard opens, displaying your
results.

If you select a folder, the dashboard shows an aggregate of the statistics for all the project runs
in that folder.

Navigate the Polyspace Access Web Interface Dashboard
After you select your project run in the Project Explorer, the Project Overview dashboard opens
for those results. The Project Overview dashboard shows a snapshot of the project including:

• What findings currently exist.
• The type and status of the findings.
• Tracking of open findings over time.

The dashboard is split into multiple sections:

• Summary

The Summary is the main section of the Project Overview dashboard and shows a snapshot of
the project. This section contains cards showing Open Issues, Code Metrics, Quality
Objectives, Defects (Bug Finder only), Run-time Checks (Code Prover only), and Coding
Standards.

• Trends

The Trends section uses a graph to show defects over time.
• Details

The Details section enables users to take a closer look at the project in a table. This table shows
the total number of coding standards violations and their status. The status and number of defects
is shown (Bug Finder only). The status and number of global variables and red, gray, orange, and
green checks is shown (Code Prover only). Click any table entry to view the corresponding results
in the Results List.

Summary Section Overview

The Summary section contains the cards listen in this table:

3 Bug Finder Analysis on Servers During Continuous Integration

3-14

Card Description
Open Issues Shows the total number of open issues, new

issues compared to the previous run, the number
of open issues that are assigned to the current
user, and the total number of unassigned issues.

Click any of these links to view the corresponding
results in the Results List.

Code Metrics Shows the total number of subprojects, number
of files, number of lines without comments, and
the biggest cyclomatic complexity value of the
code. Click the “Code Metrics” link to open the
Code Metrics dashboard in a new tab. See
“Code Metrics Dashboard in Polyspace Access
Web Interface”

Quality Objectives Shows the completion percentage of all quality
objectives and the remaining quality objectives as
defined by the current threshold. A label next to
the percentage bar shows the analysis status. For
example, the label reads Incomplete if checkers
required for the selected threshold were not
activated in the analysis.

Click the “Quality Objectives” link to open the
Quality Objectives dashboard in a new tab. You
can create user-defined thresholds for quality
objectives. See “Quality Objectives Dashboard in
Polyspace Access Web Interface”

Defects (Bug Finder only) Shows the current number of open defects along
with their status. Click the “Defects” link to open
the Defects dashboard in a new tab. This
dashboard shows a more detailed breakdown of
all open defects and provides the ability to view
defects by category or by file. See “Defects”

Run-time Checks (Code Prover Only) Shows the current number of red, orange, gray,
and green run-time checks. Click the "Run-time
Checks" link to open the Run-time Checks
dashboard in a new tab. This dashboard shows a
more detailed breakdown of open run-time
checks and provides the ability to view run-time
checks by category or by file. See “Run-Time
Checks” (Polyspace Code Prover)

 Triage and Assign Results in Polyspace Access Web Interface

3-15

Card Description
Coding Standards Shows the current number of open coding

standard issues and their status. Click the
“Coding Standards” link to open dashboards for
the coding rules in new tabs. These dashboards
can include the Custom Rules dashboard, the
Guidelines dashboard, and the dashboards for
whichever coding standards are activated for the
project such as MISRA C:2012 or SEI CERT C.
See “Coding Standards”

The different coding standards dashboards
enable you to view a more detailed breakdown of
all open coding standard issues including the
ability to view coding standard issues by category
or by file.

Clicking any link within the tables takes you to the REVIEW page with the relevant filters applied.

Navigate the Results List, Result Details, and Source Code Panels
In many cases, clicking a link on the Project Overview dashboard opens the REVIEW page. The
REVIEW page is separated into three major panes:

• Results List
• Result Details
• Source Code

To view additional panes available in the Polyspace user interface, including Review History and
Call Hierarchy, on the toolstrip, click Window and select a pane. See also “Interpret Results”.

Results List

The Results List contains all the results matching the filters that are set. No other issues are
displayed unless you remove these filters. Click the pink eraser icon next to the filters to remove all
filters. Place your cursor over an individual filter to open the option to remove the filter.

The Results List is organized in a table format. You can sort each column by clicking the column
title. You can further filter results at an item level. For the item that you want to filter, right-click the
row of the item in the column you want to filter by. This shows the options to filter out or show only
the value in the cell. You can also set the Show only and Filter out values in the Filters section on
the toolstrip. See also “Results List in Polyspace Access Web Interface”

Result Details

Result Details shows detailed information about individual results, including additional information
about the result, links to relevant documentation, and review information such as status, severity, and
comments. Select a result in the Results List to display the result information in the Result Details
pane. See “Result Details in Polyspace Access Web Interface”

When applicable, the trace of events shows the events that lead to the error. Click the event to
highlight the relevant line of code in the Source Code pane.

3 Bug Finder Analysis on Servers During Continuous Integration

3-16

You can also create a bug tracking ticket and assign an owner to a result. See “Assign Status and
Owner to Results” on page 3-19

Source Code

The Source Code pane shows the location of the result in the source code. You cannot make edits in
the Source Code pane. Select a result in the Results List to see it in the Source Code pane. Right-
click in the Source Code pane to:

• Quickly navigate to a line in the file.
• Search for all references of a variable.
• Copy the file path to your clipboard.
• Expand or collapse macros.

If multiple results are at the same location in the code, right-click the relevant code to select one of
the results to focus on with the Select Results option. See “Source Code in Polyspace Access Web
Interface”

Filter Polyspace Access Results
The toolstrip displays several additional options for navigation and filtering.

Custom Filters

Apply and create custom filters. See also “Create Custom Filter Groups in Polyspace Access Web
Interface”.

Family Filters

Quickly apply filters by result type. For instance, clicking Defects filters to show only defect type
results. Clicking the arrow next to the Defects filter specifies viewing high, medium, or low defects.
Similarly, Run-time Checks, Coding Standards, and Code Metrics enable further narrowing the scope
of your review with additional options in the drop down list.

Filters

The Filters section contains quick filters as listed in this table:

 Triage and Assign Results in Polyspace Access Web Interface

3-17

Filter Value
Workflow • Open - Findings with the status 'Unreviewed',

'To fix', 'To investigate', or 'Other'.
• To Do - Findings with the status 'Unreviewed'.
• In Progress - Findings with the status 'To fix',

'To investigate', 'Other'.
• Done - Findings with the status 'Justified',

'Not a defect', or 'No action planned'.
• Annotated - Findings with a status, severity,

or comment assigned from the source code.
State • New - Findings discovered in current run.

• Unresolved - Baseline findings still open in
current run.

• Resolved - Baseline findings fixed or done in
current run.

• Fixed - Baseline findings no longer present in
current run.

See also “Compare Results in Polyspace Access
Project to Previous Runs and View Trends”

Assignee • Unassigned
• Assigned To Me

Review Status • Unreviewed
• To Investigate
• To Fix
• Justified
• No Action Planned
• Not A Defect
• Other

Severity • High Severity
• Medium Severity
• Low Severity

See also “Classification of Defects by Impact”
Software Quality Objectives Individual filters for SQO1 through Exhaustive

See also “Evaluate Polyspace Bug Finder Results
Against Bug Finder Quality Objectives”

Use the Show only filter to show results associated with the keyword, file name, or comment in the
Show only field. Use Filter out to remove results associated with the keyword, file name, or
comment in the Filter out field.

3 Bug Finder Analysis on Servers During Continuous Integration

3-18

You can apply the Show only and Filter out filters by right-clicking the Results List table. Each
column allows for the filtering of different parameters. Right-click in the cell containing the phrase
that you want to filter and select Show only or Filter out to apply the filter.

Assign Status and Owner to Results
You can set up email alerts so that component owners get notified when Polyspace results appear in
their components. See “Send Email Notifications with Polyspace Bug Finder Server Results” on page
3-20

To assign a user to a result, select the result that you want to assign from the Results List. In the
Result Details pane, use the Assigned to drop-down list to select the user you want to assign the
results to. Alternatively, begin typing the user name and select them from the autocomplete list. To
unassign a user, click the x icon to the right of the Assigned to drop-down list.

To assign a status, severity, or comment, in the Result Details pane, choose a Status and Severity
from the drop-down lists. Comments are entered in the text field to the right of the drop down.

To select multiple results, hold the Ctrl key and click each result. If you want to select a group of
results, click the first result, then hold the Shift key and click the last result to select all results.

If your bug tracking tool is integrated with Polyspace Access, you can use the Ticket section to

create a ticket based on the result. Click to create a ticket or click to link an existing ticket.
See “Create and Track Issue in Bug Tracking Tool from Polyspace Access Web Interface”

See Also

More About
• “Create Custom Filter Groups in Polyspace Access Web Interface”
• “Review Polyspace Bug Finder Results in Web Browser”
• “Create and Track Issue in Bug Tracking Tool from Polyspace Access Web Interface”

 Triage and Assign Results in Polyspace Access Web Interface

3-19

Send Email Notifications with Polyspace Bug Finder Server
Results

If you run a Polyspace analysis as part of continuous integration, each new code submission produces
new results. You not only see new results in components that were modified but also in components
that depended on the modified components. You can set up e-mail alerts so that component owners
get notified when new Polyspace results appear in their components.

Creating E-mail Notifications
To create e-mail notifications:

1 Export new analysis results to a tab-delimited text file (.tsv format). For each result, the file
contains links to open the result in the Polyspace Access web interface.

Apply filters to export specific types of results, for instance, defects with high impact. If required,
you can also apply additional filters to the exported files using search and replace utilities. See
“Export Results for E-mail Attachments” on page 3-22.

2 Send an email with the results file in attachment.

For instance, if you use an e-mail plugin in Jenkins, you can create a post-build step to send an e-
mail after the analysis is complete.

If you use the Polyspace plugin in Jenkins, you can use Polyspace helper utilities for the entire e-mail
notification process. See “Sample Scripts for Polyspace Analysis with Jenkins”.

Alternatively, results can be directly assigned to owners based on their file paths. You can set up
email notifications that exports a separate results file per owner and sends an email to each owner

3 Bug Finder Analysis on Servers During Continuous Integration

3-20

with the corresponding results file in attachment. See “Assign Owners and Export Assigned Results”
on page 3-22.

Prerequisites
To run this tutorial:

• You must have uploaded some result to the Polyspace Access web server. If you complete the
tutorial “Run Polyspace Bug Finder on Server and Upload Results to Web Interface” on page 3-6,
you should see a folder testProject on the Project Explorer pane of the Polyspace Access web
interface. The folder contains one project myFirstProject.

To see the results in the project, with myFirstProject selected, click the Review button. You
see a list of defects. The Information column shows the impact of the defects. In this tutorial,
only high-impact defects will be exported for e-mail attachments.

• You must be able to interact with the Polyspace Access interface from the command line. For
instance, navigate to polyspaceserverroot\polyspace\bin and enter:

polyspace-access login -list-project

Here. polyspaceserverroot is the Polyspace Bug Finder Server installation folder, for instance,
C:\Program Files\Polyspace Server\R2022a.The variable login refers to the following
combination of options. You provide these options with every use of the polyspace-access
command.

-host hostName -port portNumber -login username -encrypted-password pwd

Here, hostName is the name of the Polyspace Access web server. For a locally hosted server, use
localhost. portNumber is the optional port number of the server. If you omit the port number,
9443 is used. username and pwd refer to the login and an encrypted version of your password. To
create an encrypted password, enter:

polyspace-access -encrypt-password

Copy the encrypted password and provide this password with later uses of the polyspace-
access command.

 Send Email Notifications with Polyspace Bug Finder Server Results

3-21

Export Results for E-mail Attachments
You can export all results in a project or only certain types of results.

Open a command window. Navigate to the folder where you want to export the results.

• To export all results, enter the following:

polyspace-access login -export testProject/myFirstProject -output .\result.txt

• To export only defects with high impact, enter the following:

polyspace-access login -export testProject/myFirstProject -defects High
 -output .\result_high_impact.txt

Open each text file in a spreadsheet viewing utility such as Microsoft® Excel®. In the first file, you see
all defects but in the second file, you only see the defects with high impact. Instead of -defects
High, you can apply other filters. For instance:

• To see only new defects compared to the previous analysis of the same project, use the option -
new-findings.

• To apply a more fine-grained set of filters, you can use software quality objectives (SQOs). The
software quality objectives are specified through a progressively stricter set of SQO levels,
numbered from 1 to 6. You can customize the requirements of each level in the Polyspace Access
web interface, and then use the option -open-findings-for-sqo with the level number to
export only those results that must be reviewed to meet the requirements. See also “Evaluate
Polyspace Bug Finder Results Against Bug Finder Quality Objectives”.

To see all filtering options, enter:

polyspace-access -h -export

You can configure your e-mail utility to send these exported files in attachment.

If required, you can also apply additional filters to the exported files using search and replace
utilities. For instance, use search and replace utilities on the results file to include results only from
specific files and functions. In Linux, you can use grep and sed to retain only results in specific files.

Instead of exporting to text files, you can also generate reports in PDF or Word using predefined
report templates. For more information, see polyspace-report-generator.

Assign Owners and Export Assigned Results
You can assign owners to results in specific files or folders. You can then export one result file per
owner and send an email to each owner with the corresponding file in attachment.

You can assign owners in the Polyspace Access web interface or at the command line.

In this tutorial, assign all results in the file numerical.c to jsmith and all results in the file
dataflow.c to jboyd.

3 Bug Finder Analysis on Servers During Continuous Integration

3-22

polyspace-access login
 -set-unassigned-findings testProject/myFirstProject
 -owner jsmith -source-contains numerical.c
polyspace-access login
 -set-unassigned-findings testProject/myFirstProject
 -owner jboyd -source-contains dataflow.c

After assignment, export one results file per owner.

polyspace-access login
 -export testProject/myFirstProject -output .\results.txt -output-per-owner

These files contain the exported results:

• results.txt contains all results.
• results_jsmith.txt and results_jboyd.txt contains results assigned to jsmith and

jboyd respectively.
• results.txt.owners.list contains the list of owners, in this case:

jsmith
jboyd

Before assigning owners to results, use the option -dryrun to perform a dry run of the assignments.
Without performing the assignment, the option shows the files with results that are assigned and the
owner that the results are assigned to.

See Also
polyspace-access

 Send Email Notifications with Polyspace Bug Finder Server Results

3-23

Offloading Bug Finder Analysis from
Desktop to Server

4

Send Bug Finder Analysis from Desktop to Locally Hosted
Server

You can perform a Polyspace analysis locally on your desktop or offload the analysis to one or more
dedicated servers. This topic shows a simple server-client configuration for offloading the Polyspace
analysis. In this configuration, the same computer acts as a client that submits a Polyspace analysis
and a server that runs the analysis.

You can extend this tutorial to more complex configurations. For full setup and workflow instructions,
see related links below.

Client-Server Workflow for Running Analysis
After the initial setup, you can submit a Polyspace analysis from a client desktop to a server. The
client-server workflow happens in three steps. All three steps can be performed on the same
computer or three different computers. This tutorial uses the same computer for the entire workflow.

1 Client node: You specify Polyspace analysis options and start the analysis on the client desktop.
The initial phase of analysis till compilation runs on the desktop. After compilation, the analysis
job is submitted to the server.

You require the Polyspace desktop product, Polyspace Bug Finder on the computer that acts as
the client node.

2 Head node: The server consists of a head node and several worker nodes. The head node uses a
job scheduler to manage submissions from multiple client desktops. The jobs are then distributed
to the worker nodes as they become available.

You require the product MATLAB Parallel Server™ on the computer that acts as the head node.
3 Worker nodes: When a worker becomes available, the job scheduler assigns the analysis to the

worker. The Polyspace analysis runs on the worker and the results are downloaded back to the
client desktop for review.

You require the product MATLAB Parallel Server on the computers that act as worker nodes. You
also require the Polyspace server product, Polyspace Bug Finder Server to run the analysis.

4 Offloading Bug Finder Analysis from Desktop to Server

4-2

See also “Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”.

Prerequisites
This tutorial uses the same computer as client and server. You must install the following on the
computer:

• Client-side product: Polyspace Bug Finder
• Server-side products: MATLAB Parallel Server and Polyspace Bug Finder Server

For more information, see “Install Products for Submitting Polyspace Analysis from Desktops to
Remote Server”.

You must know the host name of your computer. For instance, in Windows, open a command-line
terminal and enter:

hostname

Configure and Start Server
Stop Previous Services

If you started the services of MATLAB Parallel Server (mjs services) previously, make sure that you
have stopped all services. In particular, you might have to:

• Check your temporary folder, for instance, C:\Windows\Temp in Windows, and remove the MDCE
folder if it exists.

• Stop all services explicitly. You do not require this step in Linux.

Open a command-line terminal. Navigate to matlabroot\toolbox\parallel\bin (using cd)
and enter the following:

 Send Bug Finder Analysis from Desktop to Locally Hosted Server

4-3

mjs uninstall -clean

Here, matlabroot is the MATLAB Parallel Server installation folder, for instance, C:\Program
Files\MATLAB\R2022a.

If this is the first time you are starting the services, you do not have to do these steps.

Configure mjs Service Settings

Before starting services, you have to configure the mjs service settings. Navigate to matlabroot
\toolbox\parallel\bin, where matlabroot is the MATLAB Parallel Server installation folder, for
instance, C:\Program Files\MATLAB\R2022a. Modify these two files. To edit and save these files,
you have to open your editor in administrator mode.

• mjs_def.bat (Windows) or mjs_def.sh (Linux)

Read the instructions in the file and uncomment the lines as needed. At a minimum, you might
have to uncomment these lines:

• Hostname:

REM set HOSTNAME=myHostName

in Windows or

#HOSTNAME=`hostname -f`

in Linux. Remove the REM or # and explicitly specify your computer host name.
• Security level:

REM set SECURITY_LEVEL=

in Windows or

#SECURITY_LEVEL=""

in Linux. Remove the REM or # and explicitly specify a security level.

Otherwise, you might see an error later when starting the job scheduler.
• mjs_polyspace.conf

Modify and uncomment the line that refers to a Polyspace server product root. The line should
refer to the release number and root folder of your Polyspace server product installation. For
instance, if the R2022a release of Polyspace Bug Finder Server is installed in the root folder
C:\Program Files\Polyspace Server\R2022a, modify the line to:

POLYSPACE_SERVER_ROOT=C:\Program Files\Polyspace Server\R2022a

Otherwise, the MATLAB Parallel Server installation cannot locate the Polyspace Bug Finder Server
installation to run the analysis.

Start Services

Start the mjs services and assign the current computer as both the head node and a worker node.

4 Offloading Bug Finder Analysis from Desktop to Server

4-4

Navigate to matlabroot\toolbox\parallel\bin, where matlabroot is the MATLAB Parallel
Server installation folder, for instance, C:\Program Files\MATLAB\R2022a. Run these commands
(directly at the command line or using scripts):

mjs install
mjs start
startjobmanager -name JobScheduler -remotehost hostname -v
startworker -jobmanagerhost hostname -jobmanager JobScheduler
 -remotehost hostname -v

Here, hostname is the host name of your computer. This is the host name that you specified in the
file mjs_def.bat (Windows) or mjs_def.sh (Linux). Note that in Linux, you do not require the
command mjs install.

Instead of the command line, you can also start the services from the Admin Center interface. See
“Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”.

For more information on the commands, see “Configure Advanced Options for MATLAB Job Scheduler
Integration” (MATLAB Parallel Server).

Configure Client
Open the user interface of the desktop product, Polyspace Bug Finder. Navigate to polyspaceroot
\polyspace\bin, where polyspaceroot is the Polyspace desktop product installation folder, for
instance, C:\Program Files\Polyspace\R2022a and double-click the polyspace executable.

Select Tools > Preferences. On the Server configuration tab, enter the host name of your
computer for Job scheduler host name.

You are now set up for the server-client workflow.

Send Analysis from Client to Server
Run Bug Finder on the file numerical.c provided with your installation.

Before running these steps, to avoid entering full paths to the Polyspace executables, add the path
polyspaceroot\polyspace\bin to the PATH environment variable on your operating system. Here
polyspaceroot is the Polyspace desktop product installation folder, for instance, C:\Program
Files\Polyspace\R2022a. To check if the path is already added, open a command line terminal
and enter:

polyspace-bug-finder -h

If the path to the command is already added, you see the full list of options.

 Send Bug Finder Analysis from Desktop to Locally Hosted Server

4-5

1 Copy the file numerical.c from polyspaceroot\polyspace\examples\cxx
\Bug_Finder_Example\sources to a folder with write permissions.

2 Open a command terminal. Navigate to the folder where you saved numerical.c and enter the
following:

polyspace-bug-finder -sources numerical.c -checkers numerical
 -results-dir . -batch -scheduler hostname

Here, hostname is the host name of your computer.

After compilation, the analysis is submitted to a server and returns a job ID. To run a Code Prover
analysis, use polyspace-code-prover instead of polyspace-bug-finder. You can run the
polyspace-code-prover command with a Polyspace Bug Finder license only, provided you use
the -batch option.

3 See the status of the current job.

polyspace-jobs-manager listjobs -scheduler hostname

You can locate the current job using the job ID.
4 Once the job is completed, you can explicitly download the results.

polyspace-jobs-manager download -job jobID -results-folder .
 -scheduler hostname

Here, jobID is the job ID from the submission.

The results folder contains the downloaded results file (with extension .psbf). Open the results in
the user interface of the desktop product, Polyspace Bug Finder.

See Also

More About
• “Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”
• “Send Polyspace Analysis from Desktop to Remote Servers”
• “Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”

4 Offloading Bug Finder Analysis from Desktop to Server

4-6

Bug Finder Analysis in IDEs

5

Quick Start Guide for Polyspace as You Code
Polyspace as You Code is a static code analysis software meant for regular use by C/C++ developers
within their Integrated Development Environments (IDEs). Polyspace as You Code can find bugs and
coding standard violations on the file that is currently active in the IDE. (For full integration analysis
of a project, use Polyspace Bug Finder or Polyspace Bug Finder Server.)

Install Polyspace as You Code Analysis Engine and IDE Extensions
Polyspace as You Code comes bundled with a Polyspace Access installation meant for teams or
organizations. Once the Polyspace Access web server is set up, any of the licensed users can
download the Polyspace as You Code installer as a zipped file from the Polyspace Access web
interface.

Conceptually, Polyspace as You Code consists of these parts:

• An analysis engine
• An IDE extension that allows you to launch an analysis and view results in your IDE

IDE extensions are provided for these IDEs: Visual Studio, Visual Studio Code and Eclipse. If you
use another IDE, you can still install the analysis engine and run the analysis from the command
line or IDE console.

Unzip and start the installer and follow the on-screen instructions. After the analysis engine is
installed, you have a choice to install one or more IDE extensions. For more information, see “Install
Polyspace as You Code Using Installer”.

Alternatively, you can install the IDE extensions later. For more information, see:

• “Install Polyspace as You Code Extension in Visual Studio”
• “Install Polyspace as You Code Extension in Visual Studio Code”
• “Install Polyspace as You Code Plugin in Eclipse”

5 Bug Finder Analysis in IDEs

5-2

Run Polyspace as You Code and Review Results
After installation, each time open your IDE, the Polyspace as You Code extension is ready to start an
analysis. If you open a C or C++ file, make some changes and save the file, an analysis starts
automatically. (You can disable the automatic analysis and choose to launch an analysis explicitly
instead.)

To start an analysis, in your IDE, open the project or workspace that you are currently working on,
and open a file in the project. Alternatively, copy the following function into a .c or .cpp file and
open the file in your IDE (using a project or otherwise). The function contains bugs such as array
access out of bounds, unnecessary code, and use of assignment operator instead of equality.

#define MAXBUF 20
int buf[MAXBUF];

int saturateAndShift(int limit, int* stream, int size) {
 int i;
 int numMax = 0;

 if(size > MAXBUF) {
 return -1;
 }

 if(size <= MAXBUF) {
 for(i=0; i<size; i++) {
 if(stream[i] > limit || stream[i] < 0) {
 buf[i+1] = 0;
 }
 else if(stream[i] = limit){
 buf[i+1] = stream[i];
 numMax ++;
 }
 else {
 buf[i+1] = stream[i];
 }
 }
 }
 return numMax;
}

After a Polyspace as You Code analysis, you can see the results (bugs and coding standard violations)
as source code markers on the currently active file. You can also see the results in a separate list in
the IDE. For more information, see:

• “Run Polyspace as You Code in Visual Studio and Review Results”
• “Run Polyspace as You Code in Visual Studio Code and Review Results”
• “Run Polyspace as You Code in Eclipse and Review Results”

You can also export the results on a command line terminal or IDE console. For richer results, you can
export the results to a JSON format and manipulate them further before display. For more
information, see “Run Polyspace as You Code from Command Line and Export Results”.

 Quick Start Guide for Polyspace as You Code

5-3

Configure Polyspace as You Code IDE Extension
The default analysis is preconfigured to work on small projects in IDEs. In practice, you might have to
configure the IDE extension settings further to emulate your build closely, to enable or disable
checkers, to see new results only or for other adjustments.

For instance, by default, Polyspace as You Code runs each time you save your code. You can disable
the automatic runs using an extension setting (and run the analysis explicitly with right-click options
on the source code). For the complete list of extension settings and how to open them, see:

• “Configure Polyspace as You Code Extension in Visual Studio”
• “Configure Polyspace as You Code Extension in Visual Studio Code”
• “Configure Polyspace as You Code Plugin in Eclipse”

The extension settings fall into three major groups:

• Build options:

Using these settings, you specify whether to extract build information from existing artifacts in
IDEs such as a Visual Studio solution or a Visual Studio Code build task, or to manually enumerate
build-related Polyspace options in an options file. For more information, see “Analyzing Build in
Polyspace as You Code”.

• Checkers:

Using these settings, you can enable or disable checkers. For more information, see “Setting
Checkers in Polyspace as You Code”.

• Baselining options:

Using these settings, you can connect your Polyspace as You Code installation with a Polyspace
Access instance, and baseline your results using a project in Polyspace Access. Baselining allows
you to focus only on new results because of recent code changes. See “Baselining in Polyspace as
You Code”.

5 Bug Finder Analysis in IDEs

5-4

Deploy Polyspace Bug Finder

6

Polyspace Products for Code Analysis and Verification
In this section...
“Using Polyspace Products in Software Development” on page 6-2
“Coordinating Pre-Submit and Post-Submit Usage of Polyspace” on page 6-3
“Polyspace Products for Ada Code” on page 6-4

Polyspace products use static analysis to check code for run-time errors, coding standard violations,
security vulnerabilities, and other issues:

• A static analysis tool such as Polyspace Code Prover can cover all possible execution paths
through a program and track data flow along these paths following certain mathematical rules.
The exhaustive control and data flow analysis can complement dynamic testing and expose
potential run-time errors that might not be otherwise found in regular robustness testing.

• A static analysis tool such as Polyspace Bug Finder can scan a program for more obvious run-time
errors, security vulnerabilities, coding standard violations and other issues that potentially lead to
run-time errors or unexpected results.

Using Polyspace Products in Software Development
The Polyspace suite of products supports all phases of a software development process:

• Prior to code submission:

Developers can run the Polyspace desktop or IDE-focused products to check their code during
development or right before submission to meet predefined quality goals.

The products can be integrated into IDEs such as Visual Studio Code, Visual Studio, or Eclipse, or
run with scripts during compilation. The analysis results can be reviewed in the IDEs or in the
graphical user interface of the desktop products.

Polyspace provides the following products for desktop usage. These products are meant to run on
complete projects or smaller code modules (up to a single source file).

• Polyspace Bug Finder to check code for semantic errors that a compiler cannot detect (such
as use of = instead of ==), concurrency issues, security vulnerabilities and other defects in C
and C++ source code. The analysis can also detect some run-time errors.

• Polyspace Code Prover to perform a much deeper check and prove absence of overflow,
divide-by-zero, out-of-bounds array access and other run-time errors in C and C++ source
code.

• After code submission:

The Polyspace server products can run automatically on newly committed code as a build step in a
continuous integration process (using tools such as Jenkins). The analysis runs on a server and the
results are uploaded to a web interface for collaborative review.

Polyspace provides these products for server usage:

• Polyspace Bug Finder Server to run Bug Finder automatically on a server and upload the
results to a web interface for review, and Polyspace Access to review the uploaded results.

6 Deploy Polyspace Bug Finder

6-2

• Polyspace Code Prover Server to run Code Prover automatically on a server and upload the
results to a web interface for review, and Polyspace Access to review the uploaded results.

Typically, Polyspace Bug Finder Server (or Polyspace Code Prover Server) runs on a few build servers
and checks newly committed code as part of software build and testing. Each reviewer (developer,
quality assurance engineer or development manager) has a Polyspace Access license to review the
uploaded analysis results.

In addition, if developers have access to Polyspace Access for web review of post-submission
results, they can also install Polyspace as You Code in their IDEs for pre-submission analysis. When
installed as an IDE extension, Polyspace as You Code performs a file-scope Bug Finder-like analysis
and provides near-instant feedback to developers while coding.

This diagram shows one possible deployment of Polyspace products:

When you use both the desktop and server products, your pre-submission workflow can transition
smoothly to the post-submission workflow.

Coordinating Pre-Submit and Post-Submit Usage of Polyspace
When you run more than one Polyspace products at separate stages in your software development
workflow, the later runs can benefit from the earlier usage, and vice versa. In particular:

• Developers using Polyspace as You Code in their IDEs can easily fix defects and coding standard
violations that can be found and resolved within a single file. A later Polyspace Bug Finder Server
analysis after code submission no longer shows these issues.

 Polyspace Products for Code Analysis and Verification

6-3

• The results of a Polyspace Bug Finder Server analysis can act as a baseline for Polyspace as You
Code runs. Developers using the latest Polyspace Bug Finder Server result as baseline for their
IDE runs can focus only on issues that result from their code changes.

Polyspace Products for Ada Code
Polyspace provides these products for verifying Ada code:

• Polyspace Client™ for Ada to check Ada code for run-time errors on a desktop.
• Polyspace Server for Ada to check Ada code for run-time errors on a server.

You can either use the desktop product to run the analysis on your desktop, or a combination of the
desktop and server products to run the analysis on a server. The analysis results are downloaded to
your desktop for review.

If you have a Polyspace Code Prover Access license and have set up the web interface of Polyspace
Code Prover Access, you can upload each individual Ada result from the Ada desktop products to the
web interface for collaborative review.

See also https://www.mathworks.com/products/polyspace-ada.html.

See Also

Related Examples
• “Install Polyspace Desktop Products”
• “Install Polyspace Server and Access Products”
• “Install Polyspace Products in IDEs”
• “Differences Between Polyspace Bug Finder and Polyspace Code Prover” on page 6-5

6 Deploy Polyspace Bug Finder

6-4

https://www.mathworks.com/products/polyspace-ada.html

Differences Between Polyspace Bug Finder and Polyspace Code
Prover

Polyspace Bug Finder and Polyspace Code Prover detect run-time errors through static analysis.
Though the products have a similar user interface and the mathematics underlying the analysis can
sometimes be the same, the goals of the two products are different.

Bug Finder (or Polyspace as You Code, which performs a single-file analysis similar to Bug Finder)
quickly analyzes your code and detects many types of defects. Code Prover checks every operation in
your code for a set of possible run-time errors and tries to prove the absence of the error for all
execution paths1. For instance, for every division in your code, a Code Prover analysis tries to prove
that the denominator cannot be zero. Bug Finder does not perform such exhaustive verification. For
instance, Bug Finder also checks for a division by zero error, but it might not find all operations that
can cause the error.

The two products involve differences in setup, analysis and results review, because of this difference
in objectives. In the following sections, we highlight the primary differences between a Bug Finder
and a Code Prover analysis (also known as verification). Depending on your requirements, you can
incorporate one or both kinds of analyses at appropriate points in your software development life
cycle.

How Bug Finder and Code Prover Complement Each Other
• “Overview” on page 6-5
• “Faster Analysis with Bug Finder” on page 6-6
• “More Exhaustive Verification with Code Prover” on page 6-6
• “More Specific Defect Types with Bug Finder” on page 6-7
• “Easier Setup Process with Bug Finder” on page 6-7
• “Fewer Runs for Clean Code with Bug Finder” on page 6-8
• “Results in Real Time with Bug Finder” on page 6-8
• “More Rigorous Data and Control Flow Analysis with Code Prover” on page 6-8
• “Few False Positives with Bug Finder” on page 6-9
• “Zero False Negatives with Code Prover” on page 6-9
• “Coding Rule Support in Bug Finder” on page 6-10

Overview

Use both Bug Finder and Code Prover regularly in your development process. The products provide a
unique set of capabilities and complement each other. For possible ways to use the products together,
see “Workflow Using Both Bug Finder and Code Prover” on page 6-10.

This table provides an overview of how the products complement each other. For details, see the
sections below.

1 For each operation in your code, Code Prover considers all execution paths leading to the operation that do not have a
previous error. If an execution path contains an error prior to the operation, Code Prover does not consider it. See “Code
Prover Analysis Following Red and Orange Checks” (Polyspace Code Prover).

 Differences Between Polyspace Bug Finder and Polyspace Code Prover

6-5

Feature Bug Finder Code Prover
Number of checkers 300+ checkers for defects 30 checks for critical run-time

errors and 4 checks on global
variable usage

Depth of analysis Fast.

For instance:

• Faster analysis.
• Easier set up and review.
• Fewer runs for clean code.
• Results in real time.

Exhaustive.

For instance:

• All operations of a type
checked for certain critical
errors.

• More rigorous data and
control flow analysis.

Reporting criteria Probable defects Proven findings
Bug finding criteria Few false positives Zero false negatives

Faster Analysis with Bug Finder

How much faster the Bug Finder analysis is depends on the size of the application. The Bug Finder
analysis time increases linearly with the size of the application. The Code Prover verification time
increases at a rate faster than linear.

One possible workflow is to run Code Prover to analyze modules or libraries for robustness against
certain errors and run Bug Finder at integration stage. Bug Finder analysis on large code bases can
be completed in a much shorter time, and also find integration defects such as Declaration
mismatch and Data race.

More Exhaustive Verification with Code Prover

Code Prover tries to prove the absence of:

• Division by Zero error on every division or modulus operation
• Out of Bounds Array Index error on every array access
• Non-initialized Variable error on every variable read
• Overflow error on every operation that can overflow

and so on.

For each operation:

• If Code Prover can prove the absence of the error for all execution paths, it highlights the
operation in green.

• If Code Prover can prove the presence of a definite error for all execution paths, it highlights the
operation in red.

• If Code Prover cannot prove the absence of an error or presence of a definite error, it highlights
the operation in orange. This small percentage of orange checks indicate operations that you must
review carefully, through visual inspection or testing. The orange checks often indicate hidden
vulnerabilities. For instance, the operation might be safe in the current context but fail when
reused in another context.

You can use information provided in the Polyspace user interface to diagnose the checks. See
“More Rigorous Data and Control Flow Analysis with Code Prover” on page 6-8. You can also

6 Deploy Polyspace Bug Finder

6-6

provide contextual information to reduce unproven code even further, for instance, constrain input
ranges externally.

Bug Finder does not aim for exhaustive analysis. It tries to detect as many bugs as possible and
reduce false positives. For critical software components, running a bug finding tool is not sufficient
because despite fixing all defects found in the analysis, you can still have errors during code
execution (false negatives). After running Code Prover on your code and addressing the issues found,
you can expect the quality of your code to be much higher. See “Zero False Negatives with Code
Prover” on page 6-9.

More Specific Defect Types with Bug Finder

Code Prover checks for types of run-time errors where it is possible to mathematically prove the
absence of the error. In addition to detecting errors whose absence can be mathematically proven,
Bug Finder also detects other defects.

For instance, the statement if(a=b) is semantically correct according to the C language standard,
but often indicates an unintended assignment. Bug Finder detects such unintended operations.
Although Code Prover does not detect such unintended operations, it can detect if an unintended
operation causes other run-time errors.

Examples of defects detected by Bug Finder but not by Code Prover include good practice defects,
resource management defects, some programming defects, security defects, and defects in C++
object oriented design.

For more information, see:

• “Defects”: List of defects that Bug Finder can detect.
• “Run-Time Checks” (Polyspace Code Prover): List of run-time errors that Code Prover can detect.

Easier Setup Process with Bug Finder

Even if your code builds successfully in your compilation toolchain, it can fail in the compilation
phase of a Code Prover verification. The strict compilation in Code Prover is related to its ability to
prove the absence of certain run-time errors.

• Code Prover strictly follows the ANSI® C99 Standard, unless you explicitly use analysis options
that emulate your compiler.

To allow deviations from the ANSI C99 Standard, you must use the “Target and Compiler” options.
If you create a Polyspace project from your build system, the options are automatically set.

• Code Prover does not allow linking errors that common compilers can permit.

Though your compiler permits linking errors such as mismatch in function signature between
compilation units, to avoid unexpected behavior at run time, you must fix the errors.

For more information, see “Troubleshoot Compilation and Linking Errors” (Polyspace Code Prover).

Bug Finder is less strict about certain compilation errors. Linking errors, such as mismatch in
function signature between different compilation units, can stop a Code Prover verification but not a
Bug Finder analysis. Therefore, you can run a Bug Finder analysis with less setup effort. In Bug
Finder, linking errors are often reported as a defect after the analysis is complete.

 Differences Between Polyspace Bug Finder and Polyspace Code Prover

6-7

Fewer Runs for Clean Code with Bug Finder

To guarantee absence of certain run-time errors, Code Prover follows strict rules once it detects a
run-time error in an operation. Once a run-time error occurs, the state of your program is ill-defined
and Code Prover cannot prove the absence of errors in subsequent code. Therefore:

• If Code Prover proves a definite error and displays a red check, it does not verify the remaining
code in the same block.

Exceptions include checks such as Overflow, where the analysis continues with the result of
overflow either truncated or wrapped around.

• If Code Prover suspects the presence of an error and displays an orange check, it eliminates the
path containing the error from consideration. For instance, if Code Prover detects a Division by
Zero error in the operation 1/x, in the subsequent operation on x in that block, x cannot be zero.

• If Code Prover detects that a code block is unreachable and displays a gray check, it does not
detect errors in that block.

For more information, see “Code Prover Analysis Following Red and Orange Checks” (Polyspace Code
Prover).

Therefore, once you fix red and gray checks and rerun verification, you can find more issues. You
need to run verification several times and fix issues each time for completely clean code. The
situation is similar to dynamic testing. In dynamic testing, once you fix a failure at a certain point in
the code, you can uncover a new failure in subsequent code.

Bug Finder does not stop the entire analysis in a block after it finds a defect in that block. Even with
Bug Finder, you might have to run analysis several times to obtain completely clean code. However,
the number of runs required is fewer than Code Prover.

Results in Real Time with Bug Finder

Bug Finder shows some analysis results while the analysis is still running. You do not have to wait
until the end of the analysis to review the results.

Code Prover shows results only after the end of the verification. Once Bug Finder finds a defect, it
can display the defect. Code Prover has to prove the absence of errors on all execution paths.
Therefore, it cannot display results during analysis.

More Rigorous Data and Control Flow Analysis with Code Prover

For each operation in your code, Code Prover provides:

• Tooltips showing the range of values of each variable in the operation.

For a pointer, the tooltips show the variable that the pointer points to, along with the variable
values.

• Graphical representation of the function call sequence that leads to the operation.

By using this range information and call graph, you can easily navigate the function call hierarchy
and understand how a variable acquires values that lead to an error. For instance, for an Out of
Bounds Array Index error, you can find where the index variable is first assigned values that lead to
the error.

When reviewing a result in Bug Finder, you also have supporting information to understand the root
cause of a defect. For instance, you have a traceback from where Bug Finder found a defect to its

6 Deploy Polyspace Bug Finder

6-8

root cause. However, in Code Prover, you have more complete information, because the information
helps you understand all execution paths in your code.

Data Flow Analysis in Code Prover

Control Flow Analysis in Code Prover

Few False Positives with Bug Finder

Bug Finder aims for few false positives, that is, results that you are not likely to fix. By default, you
are shown only the defects that are likely to be most meaningful for you.

Bug Finder also assigns an attribute called impact to the defect types based on the criticality of the
defect and the rate of false positives. You can choose to analyze your code only for high-impact
defects. You can also enable or disable a defect that you do not want to review2.

Zero False Negatives with Code Prover

Code Prover aims for an exhaustive analysis. The software checks every operation that can trigger
specific types of error. If a code operation is green, it means that the operation cannot cause those
run-time errors that the software checked for3. In this way, the software aims for zero false negatives.

2 You can also disable certain Code Prover defects related to non-initialization.

 Differences Between Polyspace Bug Finder and Polyspace Code Prover

6-9

If the software cannot prove the absence of an error, it highlights the suspect operation in red or
orange and requires you to review the operation.

Coding Rule Support in Bug Finder

Bug Finder supports the modern external coding standards, such as:

• AUTOSAR C++14. See “AUTOSAR C++14 Rules”.
• MISRA C:2012. See “MISRA C:2012 Directives and Rules”.
• MISRA C++:2008. See “MISRA C++:2008 Rules”.
• CERT C. See “CERT C Rules and Recommendations”.
• CERT C++. See “CERT C++ Rules”.

Because Bug Finder is faster and easier to use, it is the recommended tool to check compliance with
these external standards. See “Polyspace Support for Coding Standards”.

Even though Code Prover supports a subset of the preceding standards, it is primarily meant for
checking run-time errors. The exhaustive analysis of Code Prover is not required for detecting coding
rule violations.

Workflow Using Both Bug Finder and Code Prover
If you have both Bug Finder and Code Prover, based on the above differences, you can deploy the two
products appropriately in your software development workflow. For instance:

• All developers in your organization can run Bug Finder on newly developed code. For maintaining
standards across your organization, you can deploy a common configuration that looks only for
specific defect types.

Code Prover can be deployed as part of your unit testing suite.
• You can run Code Prover only on critical components of your project, while running Bug Finder on

the entire project.
• You can run Code Prover on modules of code at the unit testing level, and run Bug Finder when

integrating the modules.

You can run Code Prover before unit testing. Code Prover exhaustively checks your code and tries
to prove the presence or absence of errors. Instead of writing unit tests for your entire code, you
can then write tests only for unproven code. Using Code Prover before unit testing reduces your
testing efforts drastically.

Depending on the nature of your software development workflow and available resources, there are
many other ways you can incorporate the two kinds of analysis. You can run both products on your
desktop during development or as part of automated testing on a remote server. Note that it is easier
to interpret and fix bugs closer to development. You will benefit from using both products if you
deploy them early and often in your development process.

There are two important considerations if you are running both Bug Finder and Code Prover on the
same code.

3 The Code Prover result holds only if you execute your code under the same conditions that you supplied to Code Prover
through the analysis options.

6 Deploy Polyspace Bug Finder

6-10

• A subset of MISRA C rules and JSF® C++ rules can be checked by using both Bug Finder and
Code Prover. Starting in R2021b, Bug Finder is the recommended tool for checking compliance
with coding standards. Bug Finder supports a greater number of coding rules. For instance, Bug
Finder supports all the MISRA C:2012 coding rules. Code Prover does not support a few rules.

• If a result is found in both a Bug Finder and Code Prover analysis, you can comment on the Bug
Finder result and import the comment to Code Prover.

For instance, most coding rule checkers are common to Bug Finder and Code Prover. You can add
comments to coding rule violations in Bug Finder and import the comments to the same violations
in Code Prover. To import comments, open your result set and select Tools > Import Comments.

• You can use the same project for both Bug Finder and Code Prover analysis. The following set of
options are common between Bug Finder and Code Prover:

• “Target and Compiler”
• “Macros”
• “Environment Settings”
• “Inputs and Stubbing”
• “Multitasking”
• “Coding Standards & Code Metrics”
• “Reporting”, except Bug Finder and Code Prover report (-report-template)

You might have to change more of the default options when you run the Code Prover verification
because Code Prover is stricter about compilation and linking errors.

 Differences Between Polyspace Bug Finder and Polyspace Code Prover

6-11

	Introduction
	About This Getting Started Guide
	Polyspace Bug Finder Product Description

	Bug Finder Analysis on Desktop
	Run Polyspace Bug Finder on Desktop
	Run Polyspace in User Interface
	Run Polyspace on Windows or Linux Command Line
	Run Polyspace in Eclipse
	Run Polyspace in MATLAB

	Review Polyspace Bug Finder Results in Polyspace User Interface
	Interpret Results
	Address Results Through Bug Fix or Comments
	Manage Results

	Bug Finder Analysis on Servers During Continuous Integration
	Quick Start Guide for Polyspace Server and Access Products
	Installation
	Setting Up Polyspace Analysis

	Run Polyspace Bug Finder on Server and Upload Results to Web Interface
	Prerequisites
	Check Polyspace Installation
	Run Bug Finder on Sample Files
	Sample Scripts for Bug Finder Analysis on Servers
	Specify Sources and Options in Separate Files from Launching Scripts
	Complete Workflow

	View Assigned Results in Polyspace Access Web Interface
	View Assigned Findings by Using the Polyspace Access Project Explorer and Dashboard

	Triage and Assign Results in Polyspace Access Web Interface
	Navigate the Polyspace Access Web Interface Dashboard
	Navigate the Results List, Result Details, and Source Code Panels
	Filter Polyspace Access Results
	Assign Status and Owner to Results

	Send Email Notifications with Polyspace Bug Finder Server Results
	Creating E-mail Notifications
	Prerequisites
	Export Results for E-mail Attachments
	Assign Owners and Export Assigned Results

	Offloading Bug Finder Analysis from Desktop to Server
	Send Bug Finder Analysis from Desktop to Locally Hosted Server
	Client-Server Workflow for Running Analysis
	Prerequisites
	Configure and Start Server
	Configure Client
	Send Analysis from Client to Server

	Bug Finder Analysis in IDEs
	Quick Start Guide for Polyspace as You Code
	Install Polyspace as You Code Analysis Engine and IDE Extensions
	Run Polyspace as You Code and Review Results
	Configure Polyspace as You Code IDE Extension

	Deploy Polyspace Bug Finder
	Polyspace Products for Code Analysis and Verification
	Using Polyspace Products in Software Development
	Coordinating Pre-Submit and Post-Submit Usage of Polyspace
	Polyspace Products for Ada Code

	Differences Between Polyspace Bug Finder and Polyspace Code Prover
	How Bug Finder and Code Prover Complement Each Other
	Workflow Using Both Bug Finder and Code Prover

